

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

	Remember that Companion is open source and free

	If you find something wrong here, please let us know on slack [https://bitfocus.io/api/slackinvite], via a bug report [https://github.com/bitfocus/companion/issues/new?template=bug_report] or if you fix it youself, send us a pull request on GitHub [https://github.com/bitfocus/companion].

	Bitfocus is the company that initially launched the project, but it’s 100% community driven at this point.

	Remember to donate [https://opencollective.com/companion] to the project if it helps your business :)

Ok, let’s get started!

 You can collapse the sidebar by clicking the “burger” icon on the left of Companion logo, or shrink it by clicking the arrow at the bottom of the sidebar.

 This is where all the connections, buttons, and actions are configured.
This section is divided into seven tabs.

 Companion can be remote controlled in several ways. Below you’ll find how to do it.

 All the connections in Companion are modules, and a module is what’s used to control an external device or piece of software. Modules can’t be upgraded by the user after a release. Any update to a module will need a new build of Companion. Please look at the Beta builds to test newer versions of specific modules.

Modules are being added and updated all the time. A complete list of supported devices/modules can be found on the Support List [https://bitfocus.io/support] page.

If your device or software is missing from this list, please let us know [https://bitfocus.io/about#intouch], and we’ll try to create support for it. If you’re in a hurry and need express delivery, we’ll get back to you with a price and delivery date. You can also ask the open source community [https://github.com/bitfocus/companion/issues/new?template=feature_request] by submitting a feature request.

 Companion supports various types of devices to provide input along with the Remote Control protocols.

	Connect the hardware and software you want to control. Make sure you are on the same network as they are.

	In the Elgato Stream Deck app, make sure to firmware upgrade the Stream Deck to the latest version available.

	Close the Elgato Stream Deck app. While they can work together, the best experience is with just Companion. Using both requires some additional configuration explained later.

 When you open Companion, a server window will open. From the opening screen, choose your network interface and change the port if needed - the default is 8000. This is the port of the Companion server.

[image: Launcher]Launcher

In most cases you will run Companion on the same computer that the Stream Deck or other supported surface is connected to. This is not necessary if you are not using a physical control surface, or want to connect them over the network with Companion Satellite

You can run other software on the same machine as Companion. Smaller setups are often made up of running VMix and Companion on a machine, while larger setups will connect to more devices or software over a network.

If you need to remotely control Companion from other computers on the same network, change the ‘GUI Interface’ to make Companion accessible on a different network interface, and use the URL shown underneath the text “Running”. To configure Companion from the computer you’re running it on, you can click the Launch GUI button, it will open the Admin page in your default browser.

If you are a module-developer, the cog in the top right will enable some developer tools. You can read more about this in the module development wiki [https://github.com/bitfocus/companion-module-base/wiki]

We recommend using Google Chrome, but other up to date browsers should work. There are known issues with the built-in browsers on older Android and iOS devices.

 The main window is divided into three sections. From left to right:

	Sidebar

	Main panel, typically split into two columns

[image: Admin GUI]Admin GUI

	Companion GitHub to report bugs [https://github.com/bitfocus/companion/issues]

	Facebook group to share information and ask questions [https://www.facebook.com/groups/2047850215433318/]

	The Slack group for developers [https://bitfocus.io/api/slackinvite]

	Donate to show your support and fund future development [https://donorbox.org/bitfocus-opensource]

 Emulator is a tool that gives a streamdeck like interface in your browser. It interacts with Companion just like a streamdeck does, and can be used either to test a setup or as a low cost way of giving someone some buttons they can press.

[image: Emulator]Emulator

By default a single emulator is created, since 3.0 it is possible to have multiple setup. An emulator can be viewed from multiple places at once, but they will all share the same page in Companion. By using multiple emulators, you can allow different people to view different pages simultaneously.

You can use keyboard hotkeys to control the emulator and trigger button presses. Instructions are found on the bottom of the emulator selection page.

There are some additional setting available in the Surfaces tab for each Emulator, these are covered in more detail later.

 Web buttons is a way of viewing all your buttons across all pages on a single screen, which may be useful if you want to use a web browser on a tablet to control Companion. It is an alternative approach to the Emulator, allowing for better viewing on larger screens.

[image: Web Buttons]Web Buttons

However, the Web buttons are unable to follow any page changes you have setup on the buttons, as it does not appear to Companion as a Surface.

There are many configuration options available on this page, click the cog in the top right to open the panel. Once you have configured it, bookmark the URL, as your selection is stored as URL parameters.

[image: Web Buttons Settings]Web Buttons Settings

In previous versions of Companion there were a few different Web and tablet button views. Most of these needed rewriting due to internal changes in Companion, so have consolidated into one more powerful view.

 In the Buttons tab, you can configure the buttons for your Stream Deck.

[image: Buttons Page]Buttons Page

The Buttons layout has 99 pages that can be navigated using the grey left/right arrows, or the dropdown box. You can give your pages a unique name by replacing the word PAGE right next to the page number.

If you hold down the SHIFT key on your keyboard, you can trigger a button directly by clicking on it.

Several actions exist for rearranging your buttons, Copy, Move, or Delete.First click on the desired action, then click on the button you want to apply that action to. Finally (in the case of the Copy and Move actions) click on the destination button.Alternatively, use the standard keyboard shortcuts to perform these operations.

There are also two buttons for resetting the page:

	Wipe page: Erases all buttons on the page and adds the navigation buttons.

	Reset page buttons: Leaves the buttons intact, but adds the default navigation buttons.

Export page exports just this page’s buttons to a download which can later be imported to another page or a different Companion config. See the Import / Export section below.

 From the Connections tab, you can add, configure and remove devices. You can also see the status of a connection, as well as other information about it in the table.

[image: Connections Page]Connections Page

In 3.0 the API used between the connections and Companion was overhauled, and this has resulted in some modules breaking. While a lot of the connections have been updated to fully use the new API, many haven’t. Many connections which haven’t been updated work just fine, but some unfortonately do not. This is indicated by the ⚠ symbol. Please let us know if one is broken, so we know which to prioritise.

To add a new device

	Add a new device, by scrolling though the list or through a search.

	Choose the specific device you want to add.

	Enter the connection information for device. Save the changes.

Your new device should now show in the Connections tab along with all the other devices you want to control.
Each device needs to be a separate connection. If you have two separate Barco E2, you need to add both of them as separate connections.

Once you have added your connections, you can reorder or filter them in the table. In the rightmost column, is a selection of buttons:

	? will open that module’s help information. This is also possible in the list on the right before adding a connection.

	The bug icon will take you to the GitHub page for the module. You should report any bugs you encounter with the module here, or any feature requests for missing functionality. Tip: The more detail you give on a bug or feature request, the more likely it is to be handled quickly.

	$ will show a list of all the variables that a connection provides. These can be used in various places either explained later on.

	>_ is a debug log for the module. When reporting a bug, module developers may want extra information from here to help figure out the bug. To most users this will not be interesting.

A full list of supported devices can also be found on the website. Companion Module Support List [https://bitfocus.io/support]

 This tab lets you import or export your configuration to a .companionconfig file, which can be used to backup your configuration or move it to a new computer. You can also choose to import just a single page from your file.

If you only want to export a single page, this can be done from the primary buttons page via the Export Page button.

You’re also able to completely reset your configuration here as well.

[image: Import/Export]Import/Export

 The Log section gives status updates of Companion. Different log levels can be filtered.

More detailed module specific logs can be viewed from the Connections page

Use the three buttons to toggle warnings, info and debug on and off. Errors will always be displayed in the log, no matter the settings. Last, of all, you have the option to clear the current log history, as well as export the log or a support bundle to help developers debug with your configuration.

Be sure to check here if you’re running into problems.

[image: Log File]Log FileAn example of a log with everything enabled

 In the Settings tab, you can apply some user settings

 This tab allows you to configure your Streamdecks and other Surfaces

If any of your Stream Decks are not showing up, press the Rescan USB button. Use with care as rescanning will block all operations while the scan is ongoing. You can avoid needing to do this by enabling Watch for new USB Devices in the settings page.

[image: Surfaces]Surfaces

Here you can see all your current surfaces, both local and connected over satellite. As well as any available emulators

Clicking the Settings button next to a device lets you change some things about how the Stream Deck operates:

	Use Last Page At Startup: Whether the surface should remember the last page it was on at startup, or if it should use the startup page slider bwloe

	Startup Page: If ‘Use Last Page At Startup’ is not enabled, the page the StreamDeck will show at startup

	X Offset in grid: If the device is smaller than the 8x4 grid, you can adjust the position of the surface within the grid

	Y Offset in grid: If the device is smaller than the 8x4 grid, you can adjust the position of the surface within the grid

	Brightness: The brightness of the buttons.

	Button rotation: If you’ve physically rotated your Stream Deck, you can use this setting to make the buttons match that orientation.

	Never pin code lock: If you want to ignore this device from the pincode locking.

[image: Surface Settings]Surface Settings

In the settings for each Emulator, you can configure some extra behaviours.

 In the Triggers tab, you can add, edit and remove triggers for your Companion Setup.

Triggers can provide an extra hand in making any setup more automated and allow for you to program some simple automation.

To add a new trigger, please click the button Add Trigger and fill in the information mentioned below.

[image: Triggers]Triggers

 These actions define the behaviour of the button when it is pressed or depressed (or when triggered externally).

Multiple actions, even those from multiple modules, can be linked to a button. Most actions have options to let you customize how it performs.

Note Actions are executed in parallel. Companion does not know when the actions finish executing. Therefore when you have something that requires actions to be sent in the correct order, use small relative delays of 10-100ms on each action in order for them to be executed sequentially. The same often applies when many actions (often around five or more) are sent at once to a single device. Add the same kind of delay on every 3-5 action.

[image: Button Actions]Button actions

To add an action to a button, you can either search in the box below, or click the folder button to bring up a more detailed view of all the actions available.

Companion has various built-in actions which you can use, as well as those provided by the modules.

Each button has multiple groups of actions that can be executed

The Press actions will be performed when the button is pressed or triggered.

The Release actions are performed when the button is released.

It is also possible to add some timed groups, to allow for long presses. You can add one with the Add duration group button.Once added you can edit the time of that group and whether it executed upon release or while being held.

When there is a duration group added, the Release actions becomes Short release actions, and will only be executed when released before the first duration group time is reached.

Within each group of actions, each action can be delayed to run a certain number of milliseconds after the button is triggered. Delays can be configured to be Absolute (default) or Relative, by toggling the checkbox in the button styling section.

Absolute Delays

All actions run a certain number of milliseconds from the start of the button press. Actions without a delay start immediately. This is the default behavior.

[image: Absolute delays]Absolute delays

Relative Delays

Each action runs a certain number of milliseconds after the previous action started.

[image: Relative delays]Relative delays

The order the actions are listed in matters when using relative delays. Actions can be reordered by grabbing the sort icon next to each action and dragging it up or down.

 There are several button indicators you should be familiar with:

Button	Description
—	—
[image: Button latch off]Button latch off	An unpressed button.
[image: Button error]Button error	One or more connections referenced in this button’s actions are in an error state.
[image: Button latch on]Button latch on	The button was pressed (if shown briefly) or button is latched (see Latch / Toggle buttons above).
[image: Button delay]Button delay	There are delayed actions queued to run for this button (see Delays above).

 There are two ways of setting up buttons

Using presets

The fastest way to define buttons is to use the presets.

Presets are ready made buttons with text, actions and feedback so you don’t need to spend time making everything from scratch. They can be drag and dropped onto your button layout.Not every module provides presets, and you are able to do a lot more by defining the actions on the buttons yourself, but presets can be a good starting point for those buttons.Once you have placed a preset, it is editable just like a manually defined button.

These can be found in the Presets tab on the right side of the button grid.

If one of your modules supports presets, it will be listed in this tab for you to select, just like below.

An example of modules currently loaded with premade presets[image: Preset Modules]Preset Modules

An example of categories of presets you might meet in a single module[image: Preset Folders]Preset Folders

Here is an example of presets made for an ATEM ME1 program[image: Preset Buttons]Preset Buttons

Drag the preset buttons onto a page’s button when in the Button Layout view.
Keep in mind you may still need to configure the preset after adding it to a button.

Note: you can’t add new presets as a user, they are all pre-made in code.

Manually defining

	Click on the button space you want the button to be located on.

	Set the button’s type:

	Regular button: Can trigger one or more actions. You can also click Create button instead of the dropdown to do this

	Page up: Can move up to the next page set of buttons.

	Page number: Shows the current page number/name.

	Pressing this button will return to page 1.

	Page down: Can move down to the previous page set of buttons.

[image: Selecting type]Selecting type

Button styling

There are several ways you can make your button stand out, including:

	Defining the button text.

	Adjusting the font’s size.

	Adding a PNG image (72x58px or 72x72px) to be used as a button’s background. Text can be added on top.

	Setting the alignment of the text.

	Setting the alignment of the PNG image.

	Changing the text’s color.

	Changing the button’s background color.

	Change whether the topbar is shown on the button. This can be changed per button, or globally in the settings.

There are also some behaviour options:

	Change whether to use absolute delays or Relative Delays.

	Change whether to use progress when multiple steps are defined Steps.

	Enable rotary actions for this button, to support the dials on a Streamdeck + (or similar).

[image: Button config]Button config

Creating a button

Enter your button’s text in the Button text field, then select the alignment and font size. Text and background colors can also be changed.

You can force a newline in a label by typing \n where you want the newline to appear.

You can write the text either as a string optionally using variables, or it can be written using the expression syntax. Clicking the button to the right of the text field will change the mode.

A live preview of the button will be shown on the top right corner. Button information will update in real-time in the Emulator and on any connected Surfaces.

Add actions to the button from the Add Press/on action drop-down menu.

You can add multiple actions and set delay times for each action. Delay times are in milliseconds. 1000ms = 1 second.

You can hide the topbar with the dropdown. This can be configured globally in the settings, or overridden per button.

[image: Button with topbar]Button with topbar [image: Button without topbar]Button without topbarSame 72x72px image, but with and without the topbar

Adding a PNG

Make a 72x58px PNG image or use a 72x72px PNG, but it will get cropped to fit 72x58px by the topbar. Unless you disable the bar in the settings tab. See the Settings section below.

Click the red Browse button and choose the PNG file you want to use. The picture will appear on the top right preview of the button. Text can be applied over the image.

 Feedbacks are a way of dynamically updating a buttons style based on the state of devices or other variables.

Some modules are able to provide feedback back to the button, such as changing the button’s foreground or background colors to reflect the current status of the device.

Companion has some builtin feedbacks, to allow for generic functionalty such as changing the style when a variable has a certain value.

[image: Feedback]Feedback

The feedbacks can also be reordered by grabbing the sort icon next and dragging it up or down, their value gets applied on top of the configured style of the button in the order shown.

The amount of control the feedbacks give you over the style change varies depending on the module. Newer feedbacks typically give you the ability to change any style property you desire, older ones are often limited to foreground and background colors.If you find this to be a limitation for your use of a module, open a feature request on that modules GitHub to get the feedbacks updated.

 Steps is a new concept in 3.0, to allow for creating much more powerful and complex buttons. This replaces the Latch functionality that was possible in previous versions.

To start with steps, click the Add step tab on a button. You will now have a second tab of actions on the button

[image: Button Step 2]Button Step 2

Now when you press the button, on the first press it will execute the actions from Step 1, the following press with execute the actions from Step 2. It will keep on cycling through between the two.

You can add as many steps as you like to a button, depending on your use case.

Sometimes you don’t want it to progress between steps automatically like this. You can disable this with the Progress option in the button configuration further up. Instead you can use the internal actions to change the step of the button.With this, you can do complex scenarios like shift layers where holding one button will change other buttons to step 2, and switch back to 1 upon release.

Example: You have a projector and want to close its shutter when you press the button and then open the shutter when you press it a second time. To do this, add an action to close the shutter in the Step 1 Press actions list, and the open shutter action to the Step 2 Release actions list.

 Here you can export your configuration, or a subset of it.

[image: Export]Export

 Here you can import a .companionconfig file. Various options will be disabled if it is not possible to import them from the file you have provided.

[image: Import]Import

On the Full import tab, you can specify what you want to import and then import it while performing a full reset of the configuration.

Make sure to take an export of your current configuration first, in case you make a mistake.

The Buttons and Triggers tabs allow you to import a subset of the pages or triggers, and optionally remap the connections.

 Here you can reset your configuration, or a subset of it.

[image: Reset]Reset

 If enabled, Companion will require a password to view any of the configuration pages. This does not make an installation secure, it is only designed to stop casual browsers

	Enable Locking
Whether to enable the admin password and lockout feature

	Session Timeout (minutes, 0 for no timeout)
How long after being idle should the ui lock itself. If set to 0 then it does not automatically lock

	Password
The password that must be entered to unlock the ui

 If enabled, Companion will listen for Artnet messages, allowing for external devices to control Companion. An example GrandMA2 fixture file for controlling Companion can be found on the bottom of that tab.

	Artnet ListenerCheck to allow Companion to be controlled over Artnet.

	Artnet Universe (first is 0)The Artnet universe Companion will listen on.

	Artnet ChannelThe starting channel on the universe Companion listens to.

 If enabled, Companion will listen for Ember+ messages, allowing for external devices to control Companion.

	Ember+ ListenerCheck to allow Companion to be controlled over Ember+.

	Ember+ Listen PortThe port to listens for Ember+ connections on.

 An HTTPS server can be enabled for the Companion web interfaces should your deployment require it. It is never recommended to expose the Companion interface to the Internet and HTTPS does not provide any additional security for that configuration.

	HTTPS Web ServerCheck to enable the HTTPS web server.

	HTTPS PortThe port number HTTPS is served on.

	Certificate TypeSelect from “Self Signed” to use the native certificate generator or “External” to link to certificate files on the file system.

Common Name (Domain Name)
Enter the “Common Name” (typically a domain name or hostname) that the self signed certificate should be issued for.

Certificate Expiry Day
Select the number of days the self signed certificate should be issued for (365 days is the default)

Private Key File (full path)
The full file path for an external private key file.

Certificate File (full path)
The full file path for an external certificate file.

Chain File (full path)
Option field to provide the full file path for an external chain file.

	Flip counting direction up/downWhen unchecked, pressing the Page Up button will increase to the next page (from page 2 to page 3). When checked, it will decrease to the previous page (from page 2 to page 1).

	Show + and - instead of arrows on page buttonsChanges the page buttons from the standard arrows symbols to + and - symbols instead.

	Remove the topbar on each buttonHides the Yellow bar and the button number at the top of each button.

 If enabled, Companion will listen for OSC messages, allowing for external devices to control Companion.

	OSC ListenerCheck to allow Companion to be controlled over OSC.

	OSC Listen PortThe port to listens to commands on.

	Enable Pin CodesAllows surfaces to be locked out after a timeout and require a PIN to unlock.

	Link LockoutsLocks out all surfaces when one is locked out.

	Pin CodeThe PIN that needs to be entered to unlock the surface.

	Pin Timeout (seconds, 0 to turn off)The number of seconds of inactivity before a surface locks. Enter 0 if you don’t want it to lock out due to inactivity (instead, add an action to a button to trigger a lockout on demand).

 If enabled, Companion will listen for RossTalk messages, allowing for external devices to control Companion.

	RossTalk ListenerCheck to allow Companion to be controlled over RossTalk.

	RossTalk Listen PortThe port to listens for RossTalk clients on.

	Satellite Listen PortThe port to listens for satellite clients on.

 More details on supported surfaces are available in the chapter on Surfaces.

	Watch for new USB DevicesCompanion can watch for newly connected USB Surfaces if this is enabled. If disabled, you will have to trigger a refresh yourself for Companion to use newly connected StreamDecks.

	Enable connected Streamdecks (Requires Companion restart)
When this is disabled Companion will not directly try to connect to a StreamDeckInstead the Elgato software can be used to connect StreamDecks.

	Enable connected X-keys (Requires Companion restart)
Whether to enable support for connecting to XKeys devices.

	Enable connected Loupedeck Live and Razer Stream Controller devices (Requires Companion restart)
Whether to enable support for connecting Loupedeck Live and Razer Stream Controller devices.

 If enabled, Companion will listen for TCP messages, allowing for external devices to control Companion.

	TCP ListenerCheck to allow Companion to be controlled over TCP.

	TCP Listen PortThe port to listens to commands on.

 If enabled, Companion will listen for UDP messages, allowing for external devices to control Companion.

	UDP ListenerCheck to allow Companion to be controlled over UDP.

	UDP Listen PortThe port to listens to commands on.

 Once you add a trigger, it can be opened in the edit panel on the right.

When adding a new trigger, it starts off as disabled so that it doesn’t get executed until you are ready for it.

To begin with you should give it a name, and fill in the other fields.

Triggers have 3 sections to configure

	Events
This defines when the trigger to be executed.Common events are Time interval and On variable change

[image: Events]Events

	Condition
This allows you to apply a filter on the events.For example, if using the On variable change event, you can use a condition to limit the trigger to execute only when the variable has a value of 1.This is a subset of the feedbacks that can be used on buttons.

[image: Condition]Condition

	Actions
This defines what will happen when the trigger executes and condition is met.Every action that can be used on a button can also be used here. If you want, you can make it press a button using the ‘internal: Press and release’ action.

[image: Actions]Actions

 The variables tab also includes an section for custom variables. The button labeled Custom Variables, which appears along with the other modules that expose module variables, takes you to the Custom Variables view.

Custom Variables behave just like module variables, they can be used within Button text and some modules allow their use within the options of their actions. Please check the module documentation for availability.The key difference is that their values are set by you. This can be done either through the internal actions, or some modules are able to store the result of an action to a custom variable (generic-http is able to do this.)

[image: Custom Variables View]Custom Variables View

All custom variables will appear with internal as the connection label, and their names begin with a custom_ prefix.

 +------- custom prefix
 |
connection label----+ | +--------------variable name
 | | |
 v v v
 $(internal:custom_counter)

For each Custom variable, you can see and set:

	Current value The current value of the variable

	Startup value The value to use for the variable upon restarting Companion

	Persist value Whether to persist the current value to be used upon startup. This will increase disk IO.

 Some modules can expose their state through module variables. If one of your modules supports this, it will show up in the variables tab.

[image: Module variables tab]Module variables Tab

When a module is selected, you will get a complete list of available variables. All variables in the list will show their variable name/string, description and current value, and a button that copies the string for ease of use.

[image: Module variables]Module variables

To use a variable in a button, just copy/paste the variable into the button’s label, or begin typing $(in the button’s text to choose from a list of available module variables.

[image: Module variable usage]Module variables usage

The variables (and the button) will be updated when the device updates.

A line break can be forced by putting \n where you want the line break to be.

Some actions and feedbacks support variables to be used in values. You can tell if they are supported whether typing $(in the text field starts the variable suggestions.

 You can use any variable within an expression, including custom variables.

Do so with the normal syntax. For example:

	$(internal:time_s)

 Many modules allow for using variables in input fields. A select few places support a new concept of expressions too. We hope to make these available in more places over time.

The key difference is that expressions are capable of a lot more, but are more complex to write.

A simple expression which will add two numeric variables, could look like $(internal:a) + $(internal:b). Other operators can be used here instead.
Or a more complex boolean expression could be ($(internal:a) > $(internal:b)) && !$(internal:c).

The normal operator precedence is used in complex expressions. Parentheses can also be used to overrule the precedence or to aid readability, such as ($(internal:a) + $(internal:b) / $(internal:c).

You can also do more complex expressions with conditional logic, such as ($(internal:a) > 0) ? $(internal:a) : 0.

There are various functions that you can use. These can be used in the usual ways to do various things. For example round($(internal:a)). There is a full list of available functions documented below.

Strings can be formed using `${$(internal:a)}dB`. You can use anything instead of $(internal:a), even other templates and conditional logic.

All of these features can be combined into long and complex expressions, and more is sure to be possible in the future. We look forward to seeing what you come up with!

 There are various supported functions, and we are willing to add more. Let us know if you think something is missing.

The currently supported functions are:

Numeric operations

round(val)

Rounds a number to the nearest whole number.

floor(val)

Rounds down a number to a whole number.

ceil(val)

Rounds up a number to a whole number.

abs(val)

Get the absolute value of a number.If the value is negative, the positive will be returned.

eg abs(-4) and abs(4) both give 4

fromRadix(val)

Converts a string from the specified radix to an int.

eg fromRadix("f", 16) gives 15

toRadix(val)

Converts an int to a string in the specified radix.

eg toRadix(15, 16) gives "f"

toFixed(val, dp)

Convert a number to a fixed precision string, with the specified number of digits after the decimal place.

isNumber(val)

Check if the value is a number.

max(val, val2, [val3, …])

Finds the largest of the provided values.

min(val, val2, [val3, …])

Finds the smallest of the provided values.

unixNow()

Get the current unix time in milliseconds.

timestampToSeconds(timestamp)

Convert a timestamp of format ‘HH:MM:SS’ into the number of seconds it represents.

eg 00:10:15 gives 615

You can do the reverse of this with secondsToTimestamp(str)

String operations

trim(val)

Trims any whitespace at the beginning and end of the string.

strlen(val)

Find the length of the given string.

substr(val, indexStart, indexEnd)

substr() extracts characters from indexStart up to but not including indexEnd.

	If indexStart >= str.length, an empty string is returned.

	If indexStart < 0, the index is counted from the end of the string. More formally, in this case, the substring starts at max(indexStart + str.length, 0).

	If indexStart is omitted, undefined, or cannot be converted to a number, it’s treated as 0.

	If indexEnd is omitted, undefined, or cannot be converted to a number, or if indexEnd >= str.length, substr() extracts to the end of the string.

	If indexEnd < 0, the index is counted from the end of the string.

	If indexEnd <= indexStart after normalizing negative values, an empty string is returned.

Tip: If you don’t want the behaviour of negative numbers, you can use max(0, index) to limit the value to never be below 0.

secondsToTimestamp(seconds, format)

Convert a number of seconds into a timestamp of format ‘HH:mm:ss’.

Note: If the value is less than 0, it will report 0. There is no limit to the number of hours shown, it will display values greater than 24.

By supplying the format parameter, you can choose which components will be included in the output string.

The following components are allowed:

	HH / hh - hours

	mm - minutes

	ss - seconds

msToTimestamp(milliseconds, format)

Convert a number of milliseconds into a timestamp of format ‘HH:mm:ss.SSS’.

Note: If the value is less than 0, it will report 0. There is no limit to the number of hours shown, it will display values greater than 24.

By supplying the format parameter, you can choose which components will be included in the output string.

The following components are allowed:

	HH / hh - hours

	mm - minutes

	ss - seconds

	.S / .SS / .SSS - milliseconds, in varying levels of accuracy. Must be at the end of the string

Bool operations

bool(val)

Convert a value into a boolean.

Any of the following will be interpreted as true:

	any non-zero int

	“true”

Everything else will be false.

 If the expression contains an error it will be considered invalid, the variable will not be set and an error message will be logged indicating the problem found.

This should only occur if there is a syntax error in the expression. Missing variables or invalid values should produce a predictable but bad result, often NaN.

If you find a case where it is failing to process the expression because of one of the values/functions you have used, please report this as a bug.

 Number literals can be integer or floating point numbers. For example:

	1

	1234

	1234.5678

You can also write in other encodings, and they will be automatically converted to base 10. For example:

	0x10 becomes 16

	0b11 becomes 3

 Supported operators include:

	Binary operators:

	Addition: a + b

	Subtraction: a - b

	Multiplication: a * b

	Division: a / b

	Modulous: a % b

	Equality (loose): a == b

	Equality (strict): a === b

	Inequality (loose): a != b

	Inequality (stirct): a !== b

	Greater than: a > b

	Greater than or equal: a >= b

	Less than: a < b

	Less than or equal: a <= b

	Logical OR: a || b

	Logical AND: a && b

	Right shift: a >> b

	Left shift: a << b

	Bitwise XOR: a ^ b

	Bitwise AND: a & b

	Bitwise OR: a | b

	Unary operators:

	Unary Negataion: -a

	Convert to number: +a

	Logical NOT: !a

	Bitwise NOT: ~a

	Expression grouping:

	Parenthesis: (a + b) * c

Note: In the examples able a and b should be replaced with custom variables, module variables or number literals. They are only used here for brevity.

 Expressions can contain number literals, custom variables, dynamic variables, operators, functions, ternaries and template strings.

 Please take a look at the attached files under settings for more information.

 Remote triggering can be done by sending HTTP Requests to the same IP and port Companion is running on.

Commands

	/press/bank/<page>/<bank>Press and release a button (run both down and up actions)

	/press/bank/<page>/<bank>/downPress a button (run both down actions)_

	/press/bank/<page>/<bank>/upRelease a button (run up actions)_

	/style/bank/<page>/<bank>?bgcolor=<bgcolor HEX>Change background color of button

	/style/bank/<page>/<bank>?color=<color HEX>Change color of text on button

	/style/bank/<page>/<bank>?text=<text>Change text on a button

	/style/bank/<page>/<bank>?size=<text size>Change text size on a button (between the predefined values)

	/set/custom-variable/<name>?value=<value>Change custom variable value

	/rescanMake Companion rescan for newly attached USB surfaces

ExamplesPress page 1 bank 2:/press/bank/1/2

Change the text of button 4 on page 2 to TEST:/style/bank/2/4/?text=TEST

Change the text of button 4 on page 2 to TEST, background color to #ffffff, text color to #000000 and font size to 28px:/style/bank/2/4/?text=TEST&bgcolor=%23ffffff&color=%23000000&size=28px

Change custom variable “cue” to value “intro”:/set/custom-variable/cue?value=intro

 Remote triggering can be done by sending OSC commands to port 12321.

Commands

	/press/bank/ <page> <bank>Press and release a button (run both down and up actions)

	/press/bank/ <page> <bank> <1>Press the button (run down actions and hold)

	/press/bank/ <page> <bank> <0>Release the button (run up actions)

	/style/bgcolor/ <page> <bank> <red 0-255> <green 0-255> <blue 0-255>Change background color of button

	/style/color/ <page> <bank> <red 0-255> <green 0-255> <blue 0-255>Change color of text on button

	/style/text/ <page> <bank> <text>Change text on a button

	/custom-variable/<name> <value>Change custom variable value

	/rescan 1
Make Companion rescan for newly attached USB surfaces

Examples

Press button 5 on page 1 down and hold/press/bank/1/5 1

Change button background color of button 5 on page 1 to red/style/bgcolor/1/5 255 0 0

Change the text of button 5 on page 1 to ONLINE/style/text/1/5 ONLINE

Change custom variable “cue” to value “intro”:/custom-variable/cue intro

 Remote triggering can be done by sending RossTalk commands to port 7788.

Commands

	CC <page>:<button>Press and release button

Examples

Press and release button 5 on page 2CC 2:5

 In some environments, it can be useful to connect a remote Streamdeck into Companion.

We have developed Companion Satellite [https://user.bitfocus.io/product/companion-satellite] for this purpose.

The satellite protocol follows SemVer and is documented on the wiki [https://github.com/bitfocus/companion/wiki/Satellite-API]

 Remote triggering can be done by sending TCP (port 51234) or UDP (port 51235) commands.

Commands

	PAGE-SET <page number> <surface id>Make device go to a specific page

	PAGE-UP <surface id>Page up on a specific device

	PAGE-DOWN <surface id>Page down on a specific surface

	BANK-PRESS <page> <bank>Press and release a button (run both down and up actions)

	BANK-DOWN <page> <bank>Press the button (run down actions)

	BANK-UP <page> <bank>Release the button (run up actions)

	STYLE BANK <page> <bank> TEXT <text>Change text on a button

	STYLE BANK <page> <bank> COLOR <color HEX>Change text color on a button (#000000)

	STYLE BANK <page> <bank> BGCOLOR <color HEX>Change background color on a button (#000000)

	CUSTOM-VARIABLE <name> SET-VALUE <value>Change custom variable value

	RESCAN
Make Companion rescan for newly attached USB surfaces

ExamplesSet the emulator surface to page 23:PAGE-SET 23 emulator

Press page 1 bank 2:BANK-PRESS 1 2

Change custom variable “cue” to value “intro”:CUSTOM-VARIABLE cue SET-VALUE intro

 Companion is primarily intended to be used with the various models of Elgato Stream Deck [https://www.elgato.com/en/stream-deck].

We currently support the following models:

	Stream deck (15 key)

	Stream deck Mini

	Stream deck XL

	Stream deck Mk2

	Stream deck Pedal

	Stream deck +

Occasionally Elgato will release new revisions of these products without notice, so we have to play catch up which results in new devices not working for a few weeks.

We recommend connecting to your Streamdecks without using the Elgato software, but there is a plugin in the Elgato software for those who wish to do this. If going via the Elgato software, then all your Streamdecks will display the same buttons, if done directly they can all be different. There is a setting to choose between these modes.

Stream deck +

The Stream deck + is unusual, in that it has rotary encoders and a touch strip.

The touch strip is a bit limited, and can only provide press events to companion. This means that when you press it, both the down and up actions will be fired with a short delay in between.

To utilise the rotary encoders, enable the Enable Rotary Actions checkbox on the button which wants to support the encoder. This will provide additional action groups which will be used when rotating the encoder.

 It is possible to use the Loupedeck Live [https://loupedeck.com/uk/products/loupedeck-live/], Razer Stream Controller [https://www.razer.com/gb-en/streaming-accessories/razer-stream-controller] and Loupdeck Live S [https://loupedeck.com/uk/products/loupedeck-live-s/] with Companion since v2.4.0.

It requires your Loupedeck Live to be running v0.2.0 or later firmware, and the Loupedeck software must not be running.Enable support for it in the Companion settings, and rescan for usb devices.

The layout pretty closely matches what you should expect based on the device, but the tall touch strips are not mapped across yet.
[image: Loupedeck Live template]Loupedeck Live template

Loupedeck Live template

 In some environments, it can be useful to connect a remote Streamdeck into Companion.

We have developed Companion Satellite [https://user.bitfocus.io/product/companion-satellite] for this purpose.

Satellite doesn’t support the same range of Surfaces as Companion does, but we hope to get this solved.

 Many of the XKeys [https://xkeys.com/xkeys.html] products can be used with Companion.

Due to Companion being limited to 32 buttons per page (we are looking into improving this Github issue [https://github.com/bitfocus/companion/issues/1607]), many of the xkeys devices do not translate across nicely.

Instead, Companion will map the buttons through in order (working across in rows) to buttons in Companion, using as many pages as needed.

There is some limited support for T-bars and shuttle/jog wheels, only supported by a couple of modules.

 _static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

